Ad

Bradyarrhythmias-Bradycardia : Diagnosis and treatment and a case-quiz

Note: The site is under develoment and content is continuously expanding
Cardiology free e-book online ECG QUIZ 1. An electrocardiography CASE-QUIZ:  A patient with weakness and lightheadedness. What is the diagnosis and which should be the management ?
Watch the video and answer the question. Click on the symbol [] at the lower right corner of the video to see it enlarged: full screen)




THE ANSWER 


Heart rate (ventricular rate) 30- 35/min. P waves are more frequent than the QRS complexes and they do not have any temporal relation with QRS complexes (some P waves even fall in the ST segment). This is a case of complete atrioventricular block.  QRS has a right bundle branch block morphology. In general, complete atrioventricular (AV) block would be an indication for permanent pacing, but in this case the complete (third degree) AV block could be possibly caused by verapamil, which the patient has been taking for hypertension. So there is a potentially reversible cause for the AV block. When we suspect a reversible cause we do not implant a permanent pacemaker. Instead there is an indication for temporary pacing and discontinuation of the causal drug. The patient was admitted to the hospital, verapamil was discontinued and replaced by another antihypertensive agent, with no effect on conduction. The patient remained under observation with temporary transvenous pacing for 2 days. Two days after the discontinuation of verapamil the normal heart rhythm (normal atrioventricular conduction) recovered. So a permanent pacemaker was not implanted. 
In cases, where the complete AV block persists and is not reversible, or if there is no revesible cause for the block, implantation of a permanent pacemaker is absolutely indicated.


Bradycardia is a ventricular rate (at rest) < 50 beats per minute (bpm)  (cycle length 1200 ms). Some cardiologists use 60 bpm (cycle length 1000 ms) as the lower limit of the  normal resting heart rate. Bradycardia is not always an abnormal finding. It can be normal, especially in the absence of symptoms. Trained athletes, especially endurance athletes, usually have bradycardia at rest and this is normal.
Bradycardia due to an abnormality of the conducting system of the heart is called "bradyarrhythmia". Many of these rhythm disorders are asymptomatic and benign, requiring no treatment, whereas some cause symptoms and need treatment with pacemaker implantation and others can be life threatening requiring rapid intervention.
Symptoms of bradycardia or bradyarrhythmias are nonspecific (i.e. the symptom is not always directly correlated to the bradycardia and other causes should also be sought). Symptoms include: fatigue, generalized weakness,  lightheadedness, presyncope, syncope, dyspnea on exertion. 

Bradyarrhythmias arise from abnormalities in one or more of three locations in the heart's conducting system: sinoatrial node, atrioventricular node, or infranodal (the His -Purkinje system).

A female patient 78 years old with a history of hypertension and one-vessel coronary artery disease treated with a percutaneous coronary intervention (PCI) of the right coronary artery 3 years before (because of effort angina). She also has a history of asthma. One year before she had a myocardial perfusion scintigraphy (a technetium 99m SPECT scan) which did not reveal any ischemia of significant extent or any myocardial scar. She complains of episodes of fainting, or near-fainting (one episode of syncope and two presyncopal episodes during the last month). She is currently on medication with irbesartan -hydrochlorothiazide 300/25 mg per day, aspirin 100 mg per day ,atorvastatin 20 mg per day and an inhaled bronchodilator. Physical examination is normal and it also did not reveal orthostatic hypotension. Her blood tests revealed no significant abnormalities. Her 12 lead  ECG shows sinus rhythm, a prolonged PR interval (first degree AV block) and a LBBB . Here is a part of her 24-hours Holter ECG recording. The patient did not have any symptoms during the recording. What are the findings ?  Which  could be the most probable cause ?  What treatment do you propose ?







THE ANSWER

The presence of PR prolongation and/or a bundle branch block in a patient with presyncopal or syncopal episodes, should raise a suspicion of a bradyarrhytmic cause (e.g. pauses due to sinus node dysfunction, or a transient second or third degree atrioventicular block). In this case the holter ECG recording shows sinus pauses with a duration of about 3-3,5 seconds. The most probable cause of sinus node dysfunction in this age group is idiopathic degenerative fibrosis of the conductive system. The patient does not take any medications whith an influence on sinus node function. A permanent pacemaker (type DDDR) was implanted and the patient is asymptomatic since then. (There was a class II indication for permanent pacing, since there is ECG evidence of sinus node dysfunction and symptoms compatible with the disorder are present, in the absense of another identifiable cause. If the patient had symptoms at the time of the recorded pauses, then the indication for pacing would be absolute- class I).



Sinus nodal or sinoatrial nodal (SA nodal) dysfunction (sick sinus syndrome) 
Causes of sinus node dysfunction have been classified as intrinsic or extrinsic. This classification is practical because extrinsic causes are often reversible. In this case they should be corrected (if it is possible) and this way unnecessary pacemaker therapy can be avoided. The most common causes of extrinsic sinus node dysfunction are drugs and influences of the autonomic nervous system (stimulation of the parasympathetic nervous system via the vagus nerve or inhibition of the activity of the sympathetic nervous system can suppress automaticity and/or slow conduction).
Drugs that can cause sinus node dysfunction are beta-blockers, non-dihydropyridine calcium channel blockers (verapamil, diltiazem), digoxin, ivabradine, antiarrhythmic drugs, such as type IA (quinidine, procainamide, disopyramide) ,Type IC (flecainide and propafenone) Type III (sotalol and amiodarone), sympatholytic antihypertensives (clonidine, methyldopa, reserpine) and other miscellaneous drugs (lithium, cimetidine, amitriptyline, phenytoin).
Causes of sinus node dysfunction related to effects of the autonomic nervous system include vasovagal syncope and generally situations of excessive vagal tone, the carotid sinus syndrome and endotracheal suctioning (via activation of the vagus nerve).
 Other extrinsic causes include hypothyroidism, sleep apnea, hyperkalemia, increased intracranial pressure, sepsis, hypothermia and hypoxia.
Intrinsic sinus node dysfunction is often degenerative due to fibrous replacement of the sinus node or its connections to the atrium. This is more common in elderly individuals.
Other causes of intrinsic sinus node dysfunction are :
Acute and chronic coronary artery disease (in the setting of acute myocardial infarction, typically inferior, the abnormality can be transient).
 Inflammatory processes such as myocarditis (e.g viral myocarditis), rheumatic heart disease, systemic lupus erythematosus (SLE), rheumatoid arthritis and mixed connective tissue disease. 
Congenital heart disease (transposition of the great arteries/Mustard and Fontan repairs)

Familial causes of sinus node disease (miscellaneous genetic causes and also in rare familial syndromes such as Kearns-Sayre syndrome and myotonic dystophy.
Iatrogenic damage of the sinus node from direct injury in cardiothoracic surgical procedures, or radiotherapy.
Sinus node dysfunction (sick sinus syndrome) can be manifested with: sinus bradycardia (with heart rate ≤ 50/min)
Sinus pauses, of duration > 2 seconds ( Generally pauses < 3 seconds are not a serious concern. However, pauses > 3 seconds while the patient is awake are generally concidered abnormal). For a description of sinus pauses and sinoatrial exit block see below.
Chronotropic incompetence: inability to attain 80% of the maximum predicted heart rate in response to exercise. It can be  associated with symptoms (such as fatigue, reduced exercise toleralce, dizziness with exercise). 
The "tachy-brady" (tachycardia-bradycardia) syndrome: when there are alternating periods of a supraventricular tachycardia (most commonly atrial fibrillation, but atrial flutter, or atrial tachycardia can also occur) with periods of sinus bradycardia or sinus pauses > 2 seconds. In patients with tachycardia-bradycardia syndrome after conversion of tachyarrhythmias, long pauses may occur (post-conversion pause). Sinus bradycardia in some patients can facilitate the occurence of reentrant tachycardias, by magnifying discrepancies in the duration of the refractory period between different areas of the cardiac tissue. This is a phenomenon that occurs with longer cycle lengths.
 Sinus pauses
The sinus node may fail to deliver an electrical impulse to the atria for a time interval and this is manifested on the ECG by the absence of P waves and also absence of cardiac electical activity, until a sinus impulse appears, or until an escape pacemaker (an other focus of conductive tissue) depolarizes and generates an impulse. This can happen because of a sinus arrest or sinus pause, which occurs when the sinus node does not depolarize on time, or because of sinoatrial (SA) exit block. In SA exit block the sinus node generates electrical impulses, some of which are blocked on their exit from the sinus node to the atrial tissue. SA exit block produces on the ECG an abnormality very similar to sinus arrest. SA exit block may be distinguished from sinus arrest by the fact that the pause is a multiple of the sinus PP interval (the interval between two consecutive sinus P waves before the pause)
Brief, asymptomatic sinus pauses are a common finding and do not require treatment. Generally pauses < 3 seconds are not a serious concern and can be seen in Holter ECG monitoring in up to approximately 10% of normal persons. They are also more common in athletes. Pauses lasting > 3 seconds, especially if they occur while the patient is awake are considered abnormal.


Treatment:
For sinus node dysfunction (sick sinus syndrome) implantation of a  permanent pacemaker is generally indicated only when symptoms that correlate to this disorder 
are present -this is a class I indication (or it may be indicated if symptoms compatible with the disorder are present, in the absense of another identifiable cause-a class II indication). These pacing indications are valid for cases where sinus node dysfunction is not the result of a reversible cause. 3) Sinus node disease. 
Pacing is not indicated in patients with sinus node dysfunction, or sinus bradycardia which is asymptomatic or due to reversible causes.
Atrioventricular (AV) node or His-Purkinje system disorders (disorders of atrioventricular conduction)
Their etiologies  can classified as functional (which are often reversible) or structural.  The most common cause of atrioventricular (AV) block is idiopathic fibrosis of the heart's conductive system (Lenegre’s disease and Lev’s disease). This, of course, is a structural cause and it is not reversible also.
Other structural causes include: Acute myocardial infarction (MI) : AV block in patients with acute inferior MI is more common (occuring approximately in 14%-15 % of patients) and less common in those with anterior infarction, (2%). AV block occurs usually within the first 24 hours of an acute MI, most commonly, it is first-or second-degree AV block, but complete heart block can also occur. In acute inferior MI the level of block is usually in the AV node, resulting in more stable, escape rhythms with narrow QRS complex . In contrast in acute anterior MI  the level of block is usually  in the His bundle, or bundle branches resulting in unstable escape rhythm with a wide QRS complex and a worse prognosis (high mortality rates).
Chronic coronary artery disease can also cause AV block.
Calcific valvular disease
Cardiomyopathies and infiltrative diseases of the heart can also cause disorders of AV conduction (AV block). Infiltrative diseases are conditions caused by the accumulation in tissues of substances or cells  not normally found in those tissues, such as amyloidosis, hemochromatosis and sarcoidosis 
Infectious and inflammatory disorders such as endocarditis myocarditis (Chagas disease, Lyme disease, rheumatic fever, etc)
Collagen vascular diseases (scleroderma, rheumatoid arthritis, systemic lupus erythematosus, Reiter’s syndrome, ankylosing spondylitis, and polymyositis)
Iatrogenic AV block is not uncommon. It may occur as a consequence of mitral or aortic valve surgery, or catheter ablation.
Congenital heart disease, such as congenital complete heart block ostium primum atrial septal defect and transposition of the great vessels can also cause AV block
Functional causes of AV block are common and include drugs ( beta-blockers, nondihydropyridine calcium channel blockers digoxin, antiarrhythmic drugs)
Effects exerted via the autonomic nervous system ( vasovagal syncope, carotid sinus syndrome) hyperkalemia, hypermagnesemia.

Atrioventricular (AV) node or His-Purkinje system disorders can be manifested as:
A first-degree AV blockPR interval prolongation  (PR duration >200 ms).
A second-degree AV block, which is further classified in two types:
Mobitz I (Wenckebach): The ECG shows progressive PR interval
prolongation followed by a single blocked P wave. In some cases the progressive lengthening of the PR interval may be subtle. The best way to assess it is to measure the PR interval of the beat which is immediately prior to a blocked P wave and the PR of the beat  immediately after a blocked P wave. The latter should be shorter.
In this type of atrioventricular (AV) block, the most common site of block is in the AV node.
Mobitz II: There is no progressive PR interval prolongation
before a blocked P wave. The PR interval is constant but there is intermittent conduction of the atrial electrical impulses to the ventricles, so that some P waves are not followed by a QRS complex. In Mobitz II AV block, the most common site of block
is infranodal (in the His-Purkinje system).

A special case is a 2:1 AV block, where every second P wave is conducted to the ventricles (followed by a QRS).

Third-degree (complete) AV block, or complete heart block
There is no temporal association between P waves and QRS
complexes, because there is no conduction of atrial impulses (P waves) to the ventricles. Thus, the ventricular rhythm is an escape rhythm originating from a secondary pacing site and not from transmission of sinus impulses.
This ventricular escape rhythm, if it is characterized by narrow QRS complexes, is called a junctional escape rhythm. Usually in these cases the site of block is in the AV node.
If QRS complexes are wide (≥ 120 msec) the block is infranodal, i.e. below the AV node,  in the His- Purkinje system.
The autonomic nervous system exerts an important effect on the function of the AV node but it only minimally influences the His bundle and the distal conducting system. Thus, the influence of the autonomic system on the production and conduction of electrical impulses in the heart is mainly on the sinus node and the AV node.
The AV node is highly innervated with postganglionic sympathetic and parasympathetic nerves.
Treatment of bradycardia and heart block is needed if there are symptoms such as syncope, lightheadedness, dyspnea (shortness of breath), ischemic chest pain and/or evidence of hemodynamic compromise or low cardiac output. If bradycardia is attributed to the effect of a drug, then this drug should be discontinued, if possible.However, if cessation of drug therapy considered as the cause of the bradycardia for a reasonable duration of time does not result in improvement, or drug therapy is needed for an indication (e.g. a paroxysmal tachyarrhythmia) then the implantation of a permanent pacemaker should be considered.
If rapid treatment of bradycardia is needed, because of the presense of serious symptoms, or hypotension the next step is intravenous administration of atropine. Infusion of isoproterenol, may be required in acutely decompensated patients if atropine fails, until pacing can be initiated. Temporary pacing is more effective than atropine or isoproterenol for decompensated patients with serious bradycardia. Temporary pacing includes:
External transcutaneous pacing, which can be rapidly and easily instituded, but it is used only for a short period of time, due to the unpredictable transcutaneous capture and also because it is poorly tolerated by the patient.
Transvenous temporary pacing, via the insertion of a pacing electrode through the subclavian or the internal jugular vein into the right ventricle. This is the most effective and reliable method of temporary pacing.

Implantation of a permanent pacemaker is indicated in all patients with symptomatic bradycardia (caused by sinus node dysfunction, or any type of second or third degree AV block-even Mobitz I if it results in symptoms), when bradycardia is not due to a reversible cause. When symptomatic sinus bradycardia, sinus pauses, or AV block is attributed to the effects of drug treatment (for examle treatment with beta blockers, diltiazem, verapamil, or antiarrhythmic agents) the following general rules should be followed : 
If this treatment is not absolutely necessary, these drugs should be disontinued. Then, if the bradyarrhythmia terminates, no pacemaker is indicated. 
If symptomatic bradycardia is attributed to an absolutely necessary drug treatment, then a permanent pacemaker is implanted and drug treatment is continued.
 A permanent pacemaker is also indicated  in asymptomatic patients with aqcuired Mobitz type 2 block,  or complete (third degree) AV block, because these types of block are assossiated with a high risk for the development of profound bradycardia and syncope (This is a class I indication according to ESC guidelines on cardiac pacing-2013).
 Permanent pacing is also indicated in 2:1 infranodal block, and it  should be considered in patients with second-degree type 1 AV block if it causes symptoms or if it is found to be located at intra- or infra-His levels at an electrophysiologic study.(This is a class IIa indication, according to the ESC guidelines on cardiac pacing-2013). Pacing is not indicated in patients with AV block which is due to reversible causes (i.e. a class III indication).

GO BACK TO THE HOME PAGE AND TABLE OF CONTENTS  LINK :
CARDIOLOGY BOOK ONLINE-HOME PAGE AND TABLE OF CONTENTS

Bibliography and useful links :

AHA Guideline: Management of Symptomatic Bradycardia and of Symptomatic Tachycardia in the acute setting.



ESC (2013) Guidelines on cardiac pacing and cardiac resynchronization therapy


Deal N.Evaluation And Management Of Bradydysrhythmias In The Emergency Department. Emergency Medicine Practice, 2013;15:1-16.
LINK http://www.ebmedicine.net/topics.php?paction=showTopic&topic_id=377


Focused Update Incorporated Into the ACCF/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities


ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities



No comments:

Post a Comment